本文目录一览:
电气智能化与自动化有什么区别?
就我个人在工作中的电力系统及其自动化智能化了解电力系统及其自动化**智能化,电气智能化是电气自动化一种高级应用形式。电气自动化的实现是也是依靠电路基础原理实现的,这里举例说明下最简单一种电气自动化的形式:电路保护。不学好基础的情况下,将来你掌握的只能是一中构想,你可以设计一个流程,但是你不能设计基本电路的。
添加微信好友, 获取更多信息
复制微信号
电力系统自动化的发展趋势
近年来.电力系统及其自动化智能化,国家对电力系统电力系统及其自动化智能化的自动化和智能化建设要求不断提高,企业纷纷响应,并积极制定智能电网建设规划,进行了大量投资。其中,变电、配电和用电环节的自动化建设是智能电网建设的重中之重,尤其是电力系统及其自动化智能化我国配网自动化水平还十分落后,未来仍有巨大的发展空间。
智能电网贯穿电力系统全过程,将对自动化产生巨大需求
电力自动化是运用现代计算机技术、通信技术、信息处理技术、自动控制技术等对发电、输电、变电、配电、用电、调度等环节进行监测、控制、保护及运行管理的行业,被称之为电力系统的“大脑和神经”。
而智能电网就是在传统电力系统基础上,通过集成新能源、新材料、新设备和先进传感技术、信息技术、控制技术、储能技术等新技术,形成的新一代电力系统,具有高度信息化、自动化、互动化等特征,可以更好地实现电网安全、可靠、经济、高效运行,使得电网在发生事故时可以部分自愈,抗压性强,能够自适应各类能源随机接入等。而在智能电网建设的各个环节均将以自动化为基础,尤其是在配电、用电环节,将对自动化技术和设备产生巨大需求,有望拉动电力自动化行业快速发展。
国家电网智能化投资逐步攀升,变电、配电和用电自动化是建设重点
最后从国内之一大电力公司的发展规划来看,智能电网建设重要性日益提升。在智能电网投资上,根据《国家电网智能化规划总报告》,2009-2020年国家电网总投资3.45万亿元,其中智能化投资3841亿元,占电网总投资的11.1%;同时,按不同阶段划分,智能化投资占比不断攀升。由此表明,智能电网是国家电网公司电网建设重点方向。
此外,十三五期间,用电环节占智能化投资的比重更高,达到28.9%,主要是用电信息采集等项目的建设规模大,因而投资较大;其次是配电环节占23.2%,变电环节占19.5%,主要由于配电自动化、智能变电站新建和改造等项目的建设规模大。也就是说,在智能电网的建设过程中,变电、配电和用电环节或将对自动化产生更大的需求。
我国配电自动化发展落后,将是未来发展重点
值得一提的是,配网作为实现智能电网的关键环节,我国配电自动化发展水平十分落后。目前,我国配电自动化水平覆盖率仍只在30%左右,远低于法国、日本的90%和100%。发达国家平均配电自动化水平覆盖率约70%至80%。随着新能源装机规模不断加大、分布式能源的发展、电动汽车的增长以及深化电力体制改革的需要,国内配电网建设具有较大发展潜力。
此外,根据我国颁布的《配电网建设改造行动计划(2015-2020年)》,文件明确配电网的自动化对于提高供电可靠性至关重要,是未来电力自动化发展的关键之一。同时,《规划》明确提出2020年中国配电自动化覆盖率要达到90%;同时,根据“十三五”规划,也提到要在2020年全面实现配电自动化覆盖90%的目标,其中东部地区省(区、市)公司配电自动化覆盖率不低于95%,中西部地区省(区、市)公司配电自动化覆盖率不低于90%。但是,截至目前,已建成的配电自动化项目覆盖率与2020年目标相差甚远,未来还有极大地提高空间,将是电力自动化的发展重点。
—— 更多数据及分析请参考前瞻产业研究院《中国电力自动化行业深度调研与投资战略规划分析报告》。
寻论文:电力系统及其自动化
电力系统及其自动化研究方向
(1)智能保护与变电站综合自动化
对电力系统电保护的新原理进行了研究,将国内外最新的人工智能、模糊理论、综合自动控制理论、自适应理论、 *** 通信、微机新技术等应用于新型继电保护装置中,使得新型继电保护装置具有智能控制的特点,大大提高电力系统的安全水平。对变电站自动化系统进行了多年研究,研制的分层分布式变电站综合自动化装置能够适用于35kv~500kv各种电压等级变电站。微机保护领域的研究处于国际领先水平,变电站综合自动化领域的研究已达到国际先进水平。
(2)电力市场理论与技术
基于我国目前的经济发展状况、电力市场发展的需要和电力工业技术经济的具体情况,认真研究了电力市场的运营模式,深入探讨并明确了运营流程中各步骤的具体规则;提出了适合我国现阶段电力市场运营模式的期货交易(年、月、日发电计划)、转运服务等模块的具体数学模型和算法,紧紧围绕当前我国模拟电力市场运营中亟待解决的理论问题。
(3)电力系统实时仿真系统
对电力负荷动态特性监测、电力系统实时仿真建模等方面进行了研究,引进了加拿大teqsim公司生产的电力系统数字模拟实时仿真系统,建成了全国高校之一家具备混合实时仿真环境的实验室。该仿真系统不仅可进行多种电力系统的稳态及暂态实验,提供大量实验数据,并可和多种控制装置构成闭环系统,协助科研人员进行新装置的测试,从而为研究智能保护及灵活输电系统的控制策略提供了一流的实验条件。
(4)电力系统运行人员培训仿真系统
电力系统运行人员培训仿真系统是针对我国电力企业职工岗位培训的迫切要求,将计算机、 *** 和多媒体技术的最新成果和传统的电力系统分析理论相结合,利用专家系统、智能cai(计算机辅助教学)理论,进行电力系统知识教学、培训的一种强有力手段。本系统设计新颖,并合理配置软件资源分布,教、学员台在软件系统结构上耦合性很少,且系统硬件扩充简单方便,因此学员台理论上可无限扩充。
(5)配电网自动化
在中低压 *** 数字电子载波ndlc、配网的模型及高级应用软件pas、地理信息与配网scada一体化方面取得了重大技术突破。其中,ndlc采用了dsp数字信号处理技术,提高了载波接收灵敏度,解决了载波正在配电网上应用的衰耗、干扰、路由等技术难题;高级应用软件pas将输电网ems的理论算法与配网实际结合起来,采用了最新国际标准iec61850、61970cim公共信息模型;采用配网递归虚拟流算法进行潮流计算;应用人工智能灰色神经元算法进行负荷预测。
(6)电力系统分析与控制
对在线测量技术、实时相角测量、电力系统稳定控制理论与技术、小电流接地选线 *** 、电力系统振荡机理及抑制 *** 、发电机跟踪同期技术、非线性励磁和调速控制、潮流计算的收敛性、电网调度自动化仿真、电力负荷预测 *** 、基于柔性数据收集与监控的电网故障诊断和恢复控制策略、电网故障诊断理论与技术等方面进行了研究。在非线性理论、软计算理论和小波理论在电力系统应用方面,以及在电力市场条件下电力系统分析与控制的新理论、新模型、新算法和新的实现手段进行了研究。
(7)人工智能在电力系统中的应用
结合电力工业发展的需要,开展了将专家系统、人工神经 *** 、模糊逻辑以及进化理论应用到电力系统及其元件的运行分析、警报处理、故障诊断、规划设计等方面的实用研究。在上述实用软件研究的基础上开展了电力系统智能控制理论与应用的研究,以提高电力系统运行与控制的智能化水平。。
(8)现代电力电子技术在电力系统中的应用
开展了电力电子装置控制理论和控制算法、各种电力电子装置在电力系统中的行为和作用、灵活交流输电系统、直流输电的微机控制技术、动态无功补偿技术、有源电力滤波技术、大容量交流电机变频调速技术和新型储能技术等方面的研究
(9)电气设备状态监测与故障诊断技术
通过将传感器技术、光纤技术、计算机技术、数字信号处理技术以及模式识别技术等结合起来,针对电气设备绝缘监测 *** 和故障诊断的机理进行了详细的基础研究,开发了发电机、变压器、开关设备、电容型设备和直流系统等主要电气设备的监控系统,全面提高电气设备和电力系统的安全运行水平。