本文目录一览:
苏大邵元龙课题组《ACS Nano》: 离子、电子协同高效传输MXene纤维
近年来迟誉烂,限域空间纳米流体传质领域取得显著进展,特别是一维碳纳米管以及二维纳米结构组成尺寸均一的纳米及次纳米尺度离子通道,孔隙内部微观结构和表面化学特性更为可控,是制备高功率纳米流体离子导体的理想材料结构体系。受自然界独特的微观结构的启发,将二维材料通过简单的湿法纺丝重新组装成具有纳米尺度间隙的纤维结构。重组后形成的二维材料层与层之间的限域空间可以充当分子和离子运输的二维通道。Ti 3 C 2 T x 作为二维材料MXene中发展最成熟的材料之一,具有很多与氧化石墨烯结构类似的薄层二维结构,丰富的表面官能团以及极性溶剂高分散等特性,还具有氧化石墨烯不具备的高导电性,是制备高导电纳米流体纤维的理想材料。但是由于Ti 3 C 2 T x 较大的长径比以及柔性片层结构,在湿法纺丝过程中片层易褶皱、堆叠,造成结构缺陷,显著降低纤维力学、导电特性,阻碍离子在纤维结构内部传导,从而制约了Ti 3 C 2 T x 纤维在传感、储能、制动等多功能方面的应用 探索 。

添加微信好友, 获取更多信息
复制微信号
Ti 3 C 2 T x 分散液在外界剪切力作用下,可形成定向液晶结构,可借助湿法纺丝过程形成二维片层的取向排布结构。 苏州大学 邵元龙教授团队 借助这一原理,控制湿法纺丝过程的喷丝口断面结构以及牵伸速率,诱导Ti 3 C 2 T x 片层形成取向结构,并通过Mg 2+ 离子交联作用,最终制备得到具有高取向度结构的Ti 3 C 2 T x 纤维,实现力学性能,导电性能,离子传导性能以及电化学性能的提升。相关工作以“Assembly of Nanofluidic MXene Fibers with Enhanced Ionic Transport and Capacitive Charge Storage by Flake Orientation”发表在《 ACS Nano 》上。
这项研究工作中Ti 3 C 2 T x 纤维取向度大幅度的提高主要依赖于 喷丝口的设计以及牵伸过程 。 受 流体定向 纺丝过程的启发 ,作者设计不同的喷丝口来探究Ti 3 C 2 T x 片层在流动过程中的排列情况。当处于液晶态的Ti 3 C 2 T x 纤维经过 高度纵横比的扁平状流体通道时,受到的剪切力在横向上显著增强;在水平剪切力引导下, Ti 3 C 2 T x 片层沿着纤维轴向定向排列。与圆状通道相比,扁平状流体通道有效解决了了剪切力梯度变化问题,减少了纤维中片虚搏层褶皱,孔洞等缺陷。为了提升纤维的取向度,作者对所制备的Ti 3 C 2 T x 初生凝胶纤维进行 牵伸处理 ,经过 牵伸后的纤维内部片层排列更加紧密,消除了片层间不规则的孔隙 ,这种取向结构将加速电子传输,减少电荷转移电阻和电能损失,经过WAXS测试纤维的 取向度高达0.86 。与此同时,作者采用 离子交联 进一步提升Ti 3 C 2 T x 纤维的力学性能。镁离子进入层间后与Ti 3 C 2 T x 片层 表面含氧官能团产生静电相互作用,减弱片层间双电层的厚度,增强层与层之间相互作用力 。经过交联之后的纤维力学强度高达 118MPa ,电导率提升到7200 S cm –1 ,码漏实现优异的电子传导。通过红外热成像仪对纤维导热性能进行测试,发现 Ti 3 C 2 T x 纤维在低功率下能够快速升温到108 。
Ti 3 C 2 T x 取向纤维的离子传导及电化学特性
高定向的Ti 3 C 2 T x 纤维在保持高机械性能和电子传导的同时,还能够实现优异的离子传导。与无序片层组装成的纤维相比, 定向纤维内部片层能够互相连接构成连续的层状通道 ,离子在其中的传输路径更短,传输速率更高 。当电解质被限制在纳米通道中时,电解质会表现出截然不同的性质。在比德拜长度更窄的纳米流体通道中,内壁上的表面电荷排斥单极离子并吸引反离子。这种单极离子传输可以使离子电导率提高几个数量级在1mM盐浓度下,高度定向的Ti 3 C 2 T x 纤维表现出9.7 10 4 S cm 1 高离子电导率。有效的离子输运电导率还可以促进离子在Ti 3 C 2 T x 薄片表面的快速输运,形成电双层,提高功率密度和速率能力。定向Ti 3 C 2 T x 薄片可以与密集填充的薄片形成受限的纳米流态离子传输通道,在这种电解质离子约束场景下,局部库仑有序排列被打破,层状受限孔可以有效地用于电荷存储。对Ti 3 C 2 T x 片层进行定向,同时使层状孔适应电解质离子的大小,这是一种很有前途的策略,可以更大限度地提高比电容,高达1360 F cm 3 。
小结
作者通过微流体通道控制二维片层材料取向排列,构筑快速离子传输通道;采用离子交联进一步提升纤维各项性能,从而制备出优异的Ti 3 C 2 T x 纳米流体取向纤维,有望在人工纤维组织、生物传感器分析和神经电子学中得到广泛的应用。
团队介绍:
邵元龙 ,苏州大学能源学院特聘教授,博导,北京石墨烯研究院石墨烯生物质纤维课题组组长。2016年获得东华大学材料加工工程专业博士学位,博士导师为李耀刚教授和王宏志教授,期间于2013-2015年于美国加州大学洛杉矶分校Richard B. Kaner教授课题组博士联合培养。2016-2018年剑桥大学石墨烯中心从事博士后研究,合作导师为Andrea C. Ferrari教授和Clare P. Grey教授。2018-2019年于沙特阿卜杜拉国王 科技 大学任职研究科学家,合作导师为Vincent C. Tung教授。2019年9月,加入苏州大学能源学院,任特聘教授。迄今以之一作者、通讯作者在 Nat. Rev. Mater. , Nat. Commun. (2篇), Adv. Mater., Energy Environ. Sci., Adv. Energy Mater., ACS Nano (2篇) ,Adv. Funct. Mater., Mater. Horiz. (2篇)等国际知名学术期刊发表SCI论文26篇,他引4300余次,7篇被ESI收录为高被引论文(Top 1%),2篇被ESI收录为热点论文(Top 0.1%)主持国家自然科学基金,江苏省自然科学基金青年基金,国家重点实验室开放课题等多项科研项目。担任国际期刊《Frontiers in Chemistry》(影响因子3.782,中科院SCI化学2区)“Advanced Materials for Supercapacitors”专刊客座编辑。
李硕 ,2019年9月至今为苏州大学能源学院与材料创新研究院硕士研究生,导师为邵元龙教授。主要从事功能纤维器件相关研究。入学以来以之一作者在ACS Nano杂志上发表论文;荣获苏州大学研究生学业奖学金二、三等奖。
【课题组 *** 】
*** 石墨烯及复合纤维方向博士后2-3名
*** 需求
1. 年龄原则上不超过 35 岁, 身心 健康 ,具有较高的思想道德素养、良好的团队合作精神和奉献精神;具有一定材料、化学领域的研究基础;有较强的英文阅读和写作能力;
2. 博士后要求具有国内外高校或者科研院所的材料、化学、物理等专业博士;
3. 具有纤维纺丝、柔性可穿戴器件、理论计算等相关研究背景人员,优先录取。
应聘材料:
1. 个人简历,包括基本信息、学习和科研经历、已有成果;
2. 代表论文电子版;
工作待遇
按照苏州大学统招博士后发放相关待遇,具体如下:
(一) 统招博士后人员聘期内的总薪酬由基本年薪和奖补金两部分构成。绩效评估优秀者的总薪酬为 100 万元,绩效评估良好者的总薪酬为 80 万元,绩效评估合格者的总薪酬为 60 万元。
1.基本年薪:20 万元(去除学校承担的 社会 保险和公积金之后的税前收入),按月发放。
2.奖补金:根据绩效评估结果按年度发放。
(二)对表现优异的博士后,合作导师将追加基本年薪,相关追加部分不计入 聘期内总薪酬,额外发放。
(三)提供 0.1 万元/月的租房补贴(不计入总薪酬)。
(四)在站期间获得国家博士后创新人才支持计划、博士后国际交流计划引进项目、博士后国际交流计划派出项目、香江学者计划、澳门青年学者计划、中德博士后交流项目等项目资助的,所获得的资助补贴不计入学校的总薪酬,另外叠加发放。
(五)在站期间获得的科研成果可按照学校规定享受学校科研成果奖励。
(六)在站期间可根据学校专业技术职务评聘相关规定参加专业技术职务任职资格评审。
(七)绩效评估优秀者,可优先推荐应聘校内教学科研岗位。
有意向者请将个人简历,以及代表作等相关信息发送到邮箱: ylshao@suda.edu.cn 。
投稿模板:
单篇报道: 上海交通大学周涵、范同祥《PNAS》:薄膜一贴,从此降温不用电!
系统报道: 加拿大最年轻的两院院士陈忠伟团队能源领域成果集锦
中关村国家实验室有哪些院士
北京石墨烯技术研究院院长王旭东,中科院物理研究所方少波,清华大学公共管理学院城市更新与治理...
Nat. Commun.: 异位成核法实现扭转双层石墨烯的CVD生长
扭转双层石墨烯可视作两层石墨烯以一定的扭转角度堆叠而成,其表面会形成随扭转角度变化的摩尔周期势,其能带结构也受扭转角度的调制。例如,两层石墨烯的能带耦合会导致态密度上范•霍夫奇点的出现,从而赋予其角度依赖的光电特性北京石墨烯研究院曹建苹;非公度扭转角的石墨烯则具有极小的摩擦力;而魔角(~1.1 )扭转石墨烯则具有一系列新奇的量子效应,引发北京石墨烯研究院曹建苹了人们极大的研究兴趣,催生了新的研究领域——扭转电子学(Twistronics)。目前,实验室的扭转双层石墨烯通常是通过人工堆叠的 *** 制备。如何通过生长的 *** 直接制备具有各种扭转角度的双层石墨烯是该领域需要解决的重要问题。
基于金属衬底的化学气相沉积(ChemicalVapor Deposition, CVD)法被认为是生长高品质石墨烯最有前景的 *** ,然而,由于AB堆垛具有更高的能量稳定性,CVD高温生长的双层石墨烯更趋向于形成AB堆垛而非扭转双层石墨烯。因此,打破AB堆垛石墨烯在能量上的优势,在高温下实现层间扭转成为一项重要挑战。
近日, 北京大学、北京石墨烯研究院刘忠范院士团队 及其合作者提出了“异位成核”(Hetero-site nucleation)的生长策略,通过在生长过程中引入气流扰动控制第二层石墨烯的成核位点,使两层石墨烯的晶格取向分别受到不同区域衬底的诱导,从而得到大比例的扭转双层石墨烯(图1)。
图1. 异位成核法生长策略及生长结果
一般情况下,铜表面石墨烯的生长遵从“自限制”生长模型,而当氢气分压较大时,石墨烯的边缘会从金属钝化变为氢饱和终止,导致边缘与金属的相互作用变弱,并阻碍单层石墨烯的生长,因兄帆此活性碳物种可“钻”入之一层石墨烯和铜之间进行第二层的生长。而第二层石墨烯与衬底的相互作用强于石墨烯层间的相互作用,这一特点为层间扭转提供了可能。但仅仅依靠衬底的作用还不足以形成扭转,因为石墨烯的晶格取向在成核初期即被决定,如果两层石墨烯在同一位点成核,则相同的成核环境会使两层石墨烯晶格取向一致,形成AB堆垛石墨烯。
研究人员发现,当两层石墨烯的成核位点不同时,由于衬底的台阶、扭结、位错或颗粒等微观环境的不同,层间扭转的概率会显著增加。为实现第二层石墨烯的可控成核和生长,研究人员采用了扰动生长的策略,即在CVD生长过程中改变氢改尘逗气和甲烷的分压,调控石墨烯边缘的终止态和附近的局域碳物种浓度。这一 *** 得到了12C/13C同位素标记生长实验的验证:分别在第5 min、10 min引入“扰动”,第二层的成核时间恰好对应于5 min和10 min,第二层的成核位点也恰好在12C/13C 的交接处,所得到的石墨烯为~30 -tBLG和~9 -tBLG(图2)。同时,不采用扰动的结果则表现为AB堆垛双层石墨烯,这证明了该 *** 的有效性。
图2. 同位素标记实验结果
研究者还总结了“扰动——异位成核” *** 的关键参数,通过控制两步生长法的氢气、碳源比例(图3),实现了高扭转比例(88%)的tBLG。高分辨透射电镜的表征显示出清晰的摩尔条纹(图4);电学输运测量表明其具有超高的室温载流子迁移率(68,000 cm2V 1s 1)(图5);角分辨光电子能谱测量显示出清晰的线性能带结构和范·霍夫奇点。这些均证明了通过该 *** 得到的tBLG具有超高的品质。
图3. 异位成核法生长参数
图4. TEM表征结果
图5. 迁移率测试结果
作者提出了异位成核(Hetero-site nucleation)的策略,通过引入气流扰动控制第二层石墨烯的成核,使两层石墨烯的晶格取向分别受到不同区域衬底的诱导,从而打破了AB堆垛能量更低的限制,实现了大比例的扭转双层石墨烯的制备。该 *** 为扭转石墨烯及二维材料的制备提供了新的思路,为近年来核卖新兴的扭转电子学研究奠定了材料基础。
相关研究成果以“ Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles ”为题发表在 Nature Communications 杂志上。北京大学、北京石墨烯研究院刘忠范院士、彭海琳教授,新加坡国立大学博士后林立,中国科学技术大学黄生洪副教授为本文通讯作者,北京石墨烯研究院孙禄钊博士、曼彻斯特大学王子豪博士、北京大学博士生王悦晨为之一作者,合作者还包括曼彻斯特大学Kostya S. Novoselov教授、苏州大学Mark H. Rummeli教授、中国科学技术大学李震宇教授和牛津大学陈宇林教授等。该论文涉及到的研究工作得到了北京大学化学与分子工程学院、北京分子科学国家研究中心、 科技 部、国家自然科学基金委和北京市科委的资助。
论文链接: